• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Lehrstuhllogo
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften
Suche öffnen
  • Deutsch
  • My Campus
  • FAUdir
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften

Lehrstuhllogo

Navigation Navigation close
  • Chair
    • Team
    • Career
    • Contact
    Portal Chair
  • Research
    • Additive Manufacturing
    • Modelling and Simulation
    • Casting Technology
    • Ultra-hard Coatings
    • High Performance Alloys
    • Equipment
    • Publications
    • Dissertations
    Portal Research
  • Teaching
    • Lectures
    • Theses
    • Scripts and Instructions
    Portal Teaching
  1. Home
  2. Research
  3. Modelling and Simulation
  4. Foam simulation

Foam simulation

In page navigation: Research
  • Additive Manufacturing
  • Modelling and Simulation
    • Simulation of additive manufacturing
    • Multi-Criteria Optimization
    • Foam simulation
  • Casting Technology
  • Ultra-hard Coatings
  • High Performance Alloys
  • Equipment
  • Publications
  • Dissertations

Foam simulation


The foam simulation focuses on the modelling and implementation of the physical phenomena during foam formation of metallic as well as polymeric materials. The aim is to predict improved process strategies of foam formation.
Metal Foams:
Until today, metallic foams are not common despite their potential for energy absorption and ultra-light components. The main disadvantage are the inhomogenities of the pore structure, which includes variations in the pore size, geometry and wall size. The aim is to understand the underlying effects during foam formation to improve the process.
The implemented software bases on the lattice Boltzmann method, covers he most important physical effects during foam formation and is able to predict modified process strategies. The implementation comprises the hydrodynamic, diffusive and thermodynamic conservation equations applied on free surfaces. The physical models cover the growth, coarsening, reordering and collapse of foam bubbles as well as effects of the whole pore network like aging and drainage due to capillarity and wetting.
Viscoelastic Foams:
Foam materials are due to their cellular structure an interesting material class with attractive properties. The software used for metal foams was extended to simulate the viscoelastic effects during foaming of polymers. Therefore, the numerical method was extended by a rheological model for viscoelastic fluids applied on free surfaces. With this software, the influence of different process parameters on the foam formation was studied.



Contact:

    • Prof. Dr.-Ing. habil. Carolin Körner
Comparison of experimental and numerical foam structures
(Enlarge)
Simulation of the expansion and the collapse of a metallic foam
(Enlarge)
Foam formation simulation in a complex geometry
(Enlarge)
Foam simulation in 3D (in collaboration with the Chair of System Simulation) (enlarge to play)
(Enlarge)
Comparison of experimental and numerical foam structures
Simulation of the expansion and the collapse of a metallic foam
Foam formation simulation in a complex geometry
Foam simulation in 3D (in collaboration with the Chair of System Simulation) (enlarge to play)

Publications:


  • Osmanlic F.:
    Modeling of Selective Laser Sintering of Viscoelastic Polymers (Dissertation, 2019)
  • Osmanlic F., Körner C.:
    Lattice Boltzmann method for Oldroyd-B fluids
    In: Computers & Fluids 124 (2016), p. 190-196
    ISSN: 0045-7930
    DOI: 10.1016/j.compfluid.2015.08.004
  • Inayat A., Schwerdtfeger J., Freund H., Körner C., Singer R., Schwieger W., Freund H.:
    Periodic open-cell foams: Pressure drop measurements and modeling of an ideal tetrakaidecahedra packing
    In: Chemical Engineering Science 66 (2011), p. 2758-2763
    ISSN: 0009-2509
    DOI: 10.1016/j.ces.2011.03.031
  • Körner C., Attar E.:
    Numerical Simulation of Foam Solidification Phenomena
    MetFoam 2009 (Bratislava)
    In: MetFoam 2009 - Proceedings of the 6th Interational Conference on Porous Matals and Metallic Foams 2009
  • Körner C.:
    Integral Foam Molding of Light Metals
    Springer, 2008
    ISBN: 978-3-540-68838-9
  • Thürey N., Pohl T., Rüde U., Oechsner M., Körner C.:
    Optimization and Stabilization of LBM Free Surface FlowSimulations using Adaptive Parameterization
    In: Computers & Fluids 35 (2006), p. 934-939
    ISSN: 0045-7930
    URL: http://www.sciencedirect.com/science/article/pii/S004579300500157X/pdfft?md5=59701b54104d0daae6791fd1b2140ffa&pid=1-s2.0-S004579300500157X-main.pdf
  • Körner C., Thies M., Hofmann T., Thürey N., Rüde U.:
    Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming
    In: Journal of Statistical Physics 121 (2005), p. 179-196
    ISSN: 0022-4715
    DOI: 10.1007/s10955-005-8879-8
    URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.321.499&rep=rep1&type=pdf
  • Körner C., Pohl T., Rüde U., Thürey N., Zeiser T.:
    Parallel Lattice Boltzmann Methods for CFD Applications
    In: Numerical Solution of Partial Differential Equations on Parallel Computers, New York: Springer, 2005, p. 439-465 (Lecture Notes in Computational Science and Engineering, Vol.51)
    ISBN: 3-540-29076-1

    URL: https://www10.informatik.uni-erlangen.de/Publications/Papers/2005/LBMCFD_LNCSE51.pdf
  • Oechsner M., Thies M., Arnold M., Körner C., Singer R.:
    Simulation of Metal Foam Formation with the Lattice Boltzmann Method
    International Symposium on Cellular Metals and Polymers (Fürth)
    In: R.F. Singer, C. Körner, V. Altstädt, H. Münstedt (ed.): Cellular Metals and Polymers, Zürich: 2005
  • Körner C., Pohl T., Rüde U., Thürey N., Hofmann T.:
    FreeWIHR: Lattice Boltzmann Methods with Free Surfaces and their Application in Material Technology
    KONWIHR Results Workshop (Garching)
    In: High Performance Computing in Science and Engineering, Garching 2004, Berlin/Heidelberg: 2005
  • Thies M.:
    Modellierung des Schaumbildungsprozesses von Metallen mit Hilfe der Lattice-Boltzmann-Methode (Dissertation, 2005)
  • Thürey N., Rüde U., Körner C.:
    Interactive Free Surface Fluids with the Lattice Boltzmann Method
    (2005), p. 10
    URL: https://www10.cs.fau.de/publications/reports/TechRep_2005-04.pdf
  • Körner C., Pohl T., Rüde U., Thürey N., Hofmann T.:
    FreeWiHR --- LBM with Free Surfaces
    (2004), p. 15
    URL: https://www10.cs.fau.de/publications/reports/TechRep_2004-06.pdf
  • Rüde U., Thürey N., Körner C., Pohl T.:
    Simulation von Metallschaum mittels der Lattice-Boltzmann Methode
    35 (2003), p. 4-8
  • Körner C., Singer R.:
    The Physics of Foaming: Structure Formation and Stability
    In: B. Kriszt, H. P. Degischer (ed.): Handbook of Cellular Metals, München: Wiley-VCH, 2002, p. 33-43
    ISBN: 3-527-30339-1
  • Körner C., Thies M., Singer R.:
    Modeling of metal foaming with lattice Boltzmann automata
    In: Advanced Engineering Materials 4 (2002), p. 765-769
    ISSN: 1438-1656
    DOI: 10.1002/1527-2648(20021014)4:103.0.CO;2-M
  • Körner C., Thies M., Arnold M., Singer R.:
    Modelling of metal foaming by in-situ gas formation.
    MetFoam 2001 (Bremen, 18. June 2001 - 20. June 2001)
    In: J. Banhart, M. F. Ashby, N. A. Fleck (ed.): Cellular Metals and Foaming Technology, Bremen: 2001
  • Arnold M., Körner C., Thies M., Singer R.:
    Experimental and Numerical Investigation of the Formation of Metal Foam
    Materials Week 2000 (München, 25. September 2000 - 28. September 2000)
  • Körner C., Singer R.:
    Numerical Simulation of Foam Formation and Evolution with Modified Cellular Automata
    MetFoam '99 (Bremen)
    In: J. Banhart, M. F. Ashby, N. A. Fleck (ed.): Metal Foams and Porous Metal Structures, Bremen: 1999

Chair of Materials Science and Engineering Metals
Martensstr. 5
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up