• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Lehrstuhllogo
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Faculty of Engineering
  3. Department Materials Science and Engineering
  • English
  • Deutsch
  • My Campus
  • UnivIS
  1. Friedrich-Alexander-Universität
  2. Faculty of Engineering
  3. Department Materials Science and Engineering

Lehrstuhllogo

Navigation Navigation close
  • Chair
    • Team
    • Career
    • Contact
    Portal Chair
  • Research
    • Additive Manufacturing
    • Modelling and Simulation
    • Casting Technology
    • Ultra-hard Coatings
    • High Performance Alloys
    • Equipment
    • Publications
    • Dissertations
    Portal Research
  • Teaching
    • Lectures
    • Theses
    • Scripts and Instructions
    Portal Teaching
  1. Home
  2. Research
  3. Additive Manufacturing

Additive Manufacturing

In page navigation: Research
  • Additive Manufacturing
    • Alloy development for additiv manufacturing
    • Cellular mechanical metamaterials
    • Development of process strategies
    • Expansion of the capability of SEBM by improved electron beam technology
    • Selectiv electron beam melting of special alloys
  • Modelling and Simulation
    • Simulation of additive manufacturing
    • Multi-Criteria Optimization
    • Foam simulation
  • Casting Technology
    • Investment casting and high temperature alloys
    • High pressure die casting and lightweight materials
      • Alloy development for high pressure die casting
      • In-situ reinforcement of Aluminium casting alloys
      • Diamond coating of molds and tools
      • Integral foam molding
      • Integration of piezoceramic modules
  • Ultra-hard Coatings
    • Process technology
      • Development and Up-Scaling of the hot filament process for diamond CVD
      • Alloying of metals and metal compounds in diamond CVD facilities
      • Electrochemical reactors with diamond electrodes for aqueous electrolytes
    • CVD diamond coatings of metals and ceramics
      • CVD diamond on Steel
      • CVD diamond on hard metals
      • CVD diamond on ceramics
      • Titanium- and Tantalum-based CVD coatings
    • CVD diamond foils
      • CVD diamond foils for mechanical applications
      • CVD diamond foils for thermoelectric applications
    • Test and characterisation of coated surfaces and components
      • Piston rings
      • Diamond electrodes
      • Steel tools
  • High Performance Alloys
    • Combinatorial alloy development by LMD
    • Development of high performance alloys
    • Using X-Rays and Neutrons for Materials Characterization
  • Equipment
  • Publications
  • Dissertations

Additive Manufacturing

Research Field Additive Manufacturing

The Group Additive Manufacturing (AM) is concerned with innovative methods of powder- and beam-based AM, the further development of AM processes and the development of special AM alloys. The focus is on selective electron beam melting (SEBM), selective laser melting (SLM) and laser metal deposition (LMD).
Various Arcam electron beam machines for powder bed based additive manufacturing are available. In addition, there is a new in-house developed electron beam machine (Athene) equipped with a 6 kW electron beam gun. The vacuum-based electron beam technology allows building temperatures over 1000 ° C. These process conditions enable the processing of high performance materials such as intermetallic alloys or superalloys.

Team

Mitarbeiterfoto Zongwen Fu
Zongwen Fu, Dr.-Ing.
Mitarbeiterfoto Christopher Arnold
Christopher Arnold, M.Sc
Mitarbeiterfoto Johannes Bäreis
Johannes Bäreis, M.Sc.
Mitarbeiterbild Christoph Breuning
Christoph Breuning, M.Sc.
Mitarbeiterfoto Alexander Fink
Alexander Fink, M.Sc.
Mitarbeiterbild Abdullah Jamjoom
Abdullah Jamjoom, M.Sc
Mitarbeiterfoto Jing_Yang
Jing Yang, M.Sc.
Mitarbeiterfoto Jakob Renner
Jakob Renner, M.Sc.
Mitarbeiterfoto Sebastian Wachter
Sebastian Wachter, M.Sc.
Mitarbeiterfoto Timo Berger
Timo Berger, M.Sc.
Mitarbeiterfoto Jonas Böhm
Jonas Böhm, M.Sc.
Mitarbeiterfoto Katharina Titz
Katharina Titz, M.Sc.
Mitarbeiterfoto Yannic Westrich
Yannic Westrich, M.Sc.
Mitarbeiterfoto Jihui Ye
Jihui Ye, M.Sc.
Mitarbeiterfoto Yong Chen
Yong Chen, M.Sc.
Mitarbeiterfoto Raja Abdul Basler
Raja Abdul Baseer, M.Sc.

Fields of Activity

Alloy development for additiv manufacturing

Cellular mechanical metamaterials

Development of process strategies

Expansion of the capability of SEBM by improved electron beam technology

Selectiv electron beam melting of special alloys

Publications

Journal Articles

  • Renner J., Breuning C., Markl M., Körner C.:
    Surface topographies from electron optical images in electron beam powder bed fusion for process monitoring and control
    In: Additive Manufacturing 60 (2022), Article No.: 103172
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2022.103172
  • Yang Z., Markl M., Körner C.:
    Predictive simulation of bulk metallic glass crystallization during laser powder bed fusion
    In: Additive Manufacturing 59 (2022), Article No.: 103121
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2022.103121
  • Knoerlein J., Franke MM., Schloffer M., Körner C.:
    In-situ aluminum control for titanium aluminide via electron beam powder bed fusion to realize a dual microstructure
    In: Additive Manufacturing 59 (2022)
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2022.103132
  • Reith M., Breuning C., Franke M., Körner C.:
    Impact of the Power-Dependent Beam Diameter during Electron Beam Additive Manufacturing: A Case Study with γ-TiAl
    In: Applied Sciences 12 (2022), Article No.: 11300
    ISSN: 2076-3417
    DOI: 10.3390/app122111300
  • Arnold C., Körner C.:
    Electron-optical in-situ metrology for electron beam powder bed fusion: calibration and validation
    In: Measurement Science & Technology 33 (2022), Article No.: 014001
    ISSN: 0957-0233
    DOI: 10.1088/1361-6501/ac2d5c
  • Poller MJ., Renz C., Wolf T., Körner C., Wasserscheid P., Albert J.:
    3D-Printed Raney-Cu POCS as Promising New Catalysts for Methanol Synthesis
    In: Catalysts 12 (2022)
    ISSN: 2073-4344
    DOI: 10.3390/catal12101288
  • Fiegl T., Franke M., Körner C.:
    Correlation of powder degradation, energy absorption and gas pore formation in laser-based powder bed fusion process of AlSi10Mg0.4
    In: Additive Manufacturing 56 (2022)
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2022.102917
  • Fu Z., Ye J., Franke M., Körner C.:
    A novel approach for powder bed-based additive manufacturing of compositionally graded composites
    In: Additive Manufacturing 56 (2022), Article No.: 102916
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2022.102916
  • Breuning C., Pistor J., Markl M., Körner C.:
    Basic Mechanism of Surface Topography Evolution in Electron Beam Based Additive Manufacturing
    In: Materials 15 (2022), Article No.: 4754
    ISSN: 1996-1944
    DOI: 10.3390/ma15144754
  • Ioannidou C., König HH., Semjatov N., Ackelid U., Staron P., Körner C., Hedström P., Lindwall G.:
    In-situ synchrotron X-ray analysis of metal Additive Manufacturing: Current state, opportunities and challenges
    In: Materials and Design 219 (2022), Article No.: 110790
    ISSN: 0261-3069
    DOI: 10.1016/j.matdes.2022.110790
  • Bortoluci Ormastroni LM., Lopez-Galilea I., Pistor J., Ruttert B., Körner C., Theisen W., Villechaise P., Pedraza F., Cormier J.:
    Very high cycle fatigue durability of an additively manufactured single-crystal Ni-based superalloy
    In: Additive Manufacturing 54 (2022), Article No.: 102759
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2022.102759
  • Krohmer E., Schmeiser F., Wahlmann B., Rosigkeit J., Graf G., Spoerk-Erdely P., Clemens H., Staron P., Körner C., Reimers W., Uhlmann E.:
    Revealing dynamic processes in laser powder bed fusion with in situ X-ray diffraction at PETRA III
    In: Review of Scientific Instruments 93 (2022)
    ISSN: 0034-6748
    DOI: 10.1063/5.0077105
  • Kotzem D., Teschke M., Jüchter V., Körner C., Walther F.:
    Microstructure analysis and mechanical properties of electron beam powder bed fusion (PBF-EB)-manufactured gamma-titanium aluminide (TiAl) at elevated temperatures
    In: MP Materials Testing 64 (2022), p. 636-646
    ISSN: 0025-5300
    DOI: 10.1515/mt-2021-2137
  • Vaghela R., Arkudas A., Gage D., Körner C., Von Hoersten S., Salehi S., Horch RE., Hessenauer M.:
    Microvascular development in the rat arteriovenous loop model in vivo-A step by step intravital microscopy analysis
    In: Journal of Biomedical Materials Research Part A (2022)
    ISSN: 1549-3296
    DOI: 10.1002/jbm.a.37395
  • Yang Z., Wang H., Krauß S., Huber F., Merle B., Schmidt M., Markl M., Körner C.:
    Evolution of an industrial-grade Zr-based bulk metallic glass during multiple laser beam melting
    In: Journal of Non-Crystalline Solids 589 (2022), Article No.: 121649
    ISSN: 0022-3093
    DOI: 10.1016/j.jnoncrysol.2022.121649
  • Hofer A., Wachter S., Döhler D., Laube A., Sánchez Batalla B., Fu Z., Weidlich C., Struckmann T., Körner C., Bachmann J.:
    Practically applicable water oxidation electrodes from 3D-printed Ti6Al4V scaffolds with surface nanostructuration and iridium catalyst coating
    In: Electrochimica Acta 417 (2022), p. 140308
    ISSN: 0013-4686
    DOI: 10.1016/j.electacta.2022.140308
  • Yang J., Fu Z., Ye J., Kübrich D., Körner C.:
    Electron beam-based additive manufacturing of Fe93.5Si6.5 (wt.%) soft magnetic material with controllable magnetic performance
    In: Scripta Materialia 210 (2022), Article No.: 114460
    ISSN: 1359-6462
    DOI: 10.1016/j.scriptamat.2021.114460
  • Steiner D., Reinhardt L., Fischer L., Popp V., Körner C., Geppert C., Bäuerle T., Horch RE., Arkudas A.:
    Impact of Endothelial Progenitor Cells in the Vascularization of Osteogenic Scaffolds
    In: Cells 11 (2022), Article No.: 926
    ISSN: 2073-4409
    DOI: 10.3390/cells11060926
  • Pistor J., Hagen S., Virtanen S., Körner C.:
    Influence of the microstructural homogeneity on the high-temperature oxidation behavior of a single crystalline Ni-base superalloy
    In: Scripta Materialia 207 (2022), Article No.: 114301
    ISSN: 1359-6462
    DOI: 10.1016/j.scriptamat.2021.114301
  • Galgon F., Melzer D., Zenk C., Dzugan J., Körner C.:
    Miniature mechanical testing of LMD-fabricated compositionally & microstructurally graded γ titanium aluminides
    In: Journal of Materials Research (2022)
    ISSN: 0884-2914
    DOI: 10.1557/s43578-022-00801-0
  • Bäreis J., Semjatov N., Renner J., Ye J., Fu Z., Körner C.:
    Electron-optical in-situ crack monitoring during electron beam powder bed fusion of the Ni-Base superalloy CMSX-4
    In: Progress in Additive Manufacturing (2022)
    ISSN: 2363-9512
    DOI: 10.1007/s40964-022-00357-9
  • Luo N., Galgon F., Krauß S., Morales LA., Merle B., Zenk C., Körner C.:
    Microstructural evolution and mechanical properties in Zr–Cu–Al–Nb bulk metallic glass composites prepared by laser metal deposition
    In: Intermetallics 140 (2022), Article No.: 107393
    ISSN: 0966-9795
    DOI: 10.1016/j.intermet.2021.107393
  • Pistor J., Körner C.:
    A novel mechanism to generate metallic single crystals
    In: Scientific Reports 11 (2021)
    ISSN: 2045-2322
    DOI: 10.1038/s41598-021-04235-2
  • Wimler D., Käsznar K., Musi M., Breuning C., Markl M., Keckes J., Clemens H., Körner C., Mayer S.:
    How electron beam melting tailors the Al-sensitive microstructure and mechanical response of a novel process-adapted γ-TiAl based alloy
    In: Materials & Design 212 (2021), Article No.: 110187
    ISSN: 0264-1275
    DOI: 10.1016/j.matdes.2021.110187
  • Fiegl T., Franke M., Raza A., Hryha E., Körner C.:
    Effect of AlSi10Mg0.4 long-term reused powder in PBF-LB/M on the mechanical properties
    In: Materials & Design 212 (2021), Article No.: 110176
    ISSN: 0264-1275
    DOI: 10.1016/j.matdes.2021.110176
  • Kengelbach-Weigand A., Thielen C., Bäuerle T., Götzl R., Gerber T., Körner C., Beier J., Horch RE., Boos A.:
    Personalized medicine for reconstruction of critical-size bone defects – a translational approach with customizable vascularized bone tissue
    In: npj Regenerative Medicine 6 (2021), Article No.: 49
    ISSN: 2057-3995
    DOI: 10.1038/s41536-021-00158-8
  • Leijon F., Wachter S., Fu Z., Körner C., Skjervold S., Moverare J.:
    A novel rapid alloy development method towards powder bed additive manufacturing, demonstrated for binary Al-Ti, -Zr and -Nb alloys
    In: Materials & Design 211 (2021)
    ISSN: 0264-1275
    DOI: 10.1016/j.matdes.2021.110129
  • Rottensteiner-Brandl U., Bertram U., Lingens L., Köhn K., Distel L., Fey T., Körner C., Horch RE., Arkudas A.:
    Free Transplantation of a Tissue Engineered Bone Graft into an Irradiated, Critical-Size Femoral Defect in Rats
    In: Cells 10 (2021)
    ISSN: 2073-4409
    DOI: 10.3390/cells10092256
  • Breuning C., Arnold C., Markl M., Körner C.:
    A multivariate meltpool stability criterion for fabrication of complex geometries in electron beam powder bed fusion
    In: Additive Manufacturing 45 (2021), Article No.: 102051
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2021.102051
  • Sommerschuh M., Wirth J., Englisch S., Przybilla T., Apeleo Zubiri B., Pistor J., Merle B., Körner C., Göken M., Spiecker E.:
    A scale-bridging study of the influence of TCP phases on the mechanical properties of an additive manufactured Ni-base superalloy combining microcompression testing, X-ray nanotomography and TEM
    In: Microscopy and Microanalysis 27 (2021), p. 938-942
    ISSN: 1431-9276
    DOI: 10.1017/S1431927621003603
  • Pistor J., Breuning C., Körner C.:
    A single crystal process window for electron beam powder bed fusion additive manufacturing of a CMSX-4 type Ni-based superalloy
    In: Materials 14 (2021), Article No.: 3785
    ISSN: 1996-1944
    DOI: 10.3390/ma14143785
  • Rausch A., Pistor J., Breuning C., Markl M., Körner C.:
    New grain formation mechanisms during powder bed fusion
    In: Materials 14 (2021), Article No.: 3324
    ISSN: 1996-1944
    DOI: 10.3390/ma14123324
  • Hessenauer M., Vaghela R., Körner C., Von Horsten S., Pobel C., Gage D., Muller C., Salehi S., Horch RE., Arkudas A.:
    Watching the Vessels Grow: Establishment of Intravital Microscopy in the Arteriovenous Loop Rat Model
    In: Tissue Engineering - Part C: Methods 27 (2021), p. 357-365
    ISSN: 1937-3384
    DOI: 10.1089/ten.tec.2021.0024
  • Kergaßner A., Köpf J., Markl M., Körner C., Mergheim J., Steinmann P.:
    A Novel Approach to Predict the Process-Induced Mechanical Behavior of Additively Manufactured Materials
    In: Journal of Materials Engineering and Performance (2021)
    ISSN: 1059-9495
    DOI: 10.1007/s11665-021-05725-0
  • Raza A., Fiegl T., Hanif I., Markström A., Franke M., Körner C., Hryha E.:
    Degradation of AlSi10Mg powder during laser based powder bed fusion processing
    In: Materials and Design 198 (2021), Article No.: 109358
    ISSN: 0261-3069
    DOI: 10.1016/j.matdes.2020.109358
  • Küng V., Scherr R., Markl M., Körner C.:
    Multi-material model for the simulation of powder bed fusion additive manufacturing
    In: Computational Materials Science 194 (2021)
    ISSN: 0927-0256
    DOI: 10.1016/j.commatsci.2021.110415
  • Wahlmann B., Körner C., Nunn M.:
    Electron Beam Wire Cladding of Nickel Alloys and Stainless Steel on a Reactor Pressure Vessel Steel
    In: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing (2021)
    ISSN: 0921-5093
    DOI: 10.1016/j.msea.2021.141082
  • Yang Z., Bauereiß A., Markl M., Körner C.:
    Modeling laser beam absorption of metal alloys at high temperatures for selective laser melting
    In: Advanced Engineering Materials 23 (2021), Article No.: 2100137
    ISSN: 1438-1656
    DOI: 10.1002/adem.202100137
  • Arnold C., Breuning C., Körner C.:
    Electron-Optical In Situ Imaging for the Assessment of Accuracy in Electron Beam Powder Bed Fusion
    In: Materials 14 (2021), Article No.: 7240
    ISSN: 1996-1944
    DOI: 10.3390/ma14237240
  • Förner A., Vollhüter J., Hausmann D., Arnold C., Felfer P., Neumeier S., Göken M.:
    Nanostructuring of Nb-Si-Cr Alloys by Electron Beam Melting to Improve the Mechanical Properties and the Oxidation Behavior
    In: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science (2021)
    ISSN: 1073-5623
    DOI: 10.1007/s11661-021-06516-x
  • Wahlmann B., Leidel D., Markl M., Körner C.:
    Numerical Alloy Development for Additive Manufacturing towards Reduced Cracking Susceptibility
    In: Crystals 11 (2021)
    ISSN: 2073-4352
    DOI: 10.3390/cryst11080902
  • Arnold C., Körner C.:
    In-situ electron optical measurement of thermal expansion in electron beam powder bed fusion
    In: Additive Manufacturing 46 (2021)
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2021.102213
  • Wahlmann B., Krohmer E., Breuning C., Schell N., Staron P., Uhlmann E., Körner C.:
    In‐situ Observation of γ' Phase Transformation Dynamics during Selective Laser Melting of CMSX‐4
    In: Advanced Engineering Materials (2021)
    ISSN: 1438-1656
    DOI: 10.1002/adem.202100112
  • Wormser M., Kiefer DA., Rupitsch S., Körner C.:
    Comparison of Transmission Measurement Methods of Elastic Waves in Phononic Band Gap Materials
    In: Materials (2021)
    ISSN: 1996-1944
    DOI: 10.3390/ma14051133
  • Gotterbarm M., Seifi M., Melzer D., Džugan J., Salem AA., Liu ZH., Körner C.:
    Small scale testing of IN718 single crystals manufactured by EB-PBF
    In: Additive Manufacturing 36 (2020), Article No.: 101449
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2020.101449
  • Reith M., Franke M., Schloffer M., Körner C.:
    Processing 4th generation titanium aluminides via electron beam based additive manufacturing – characterization of microstructure and mechanical properties
    In: Materialia 14 (2020), Article No.: 100902
    ISSN: 2589-1529
    DOI: 10.1016/j.mtla.2020.100902
  • Rausch A., Gotterbarm M., Pistor J., Markl M., Körner C.:
    New grain formation by constitutional undercooling due to remelting of segregated microstructures during powder bed fusion
    In: Materials 13 (2020), p. 1-14
    ISSN: 1996-1944
    DOI: 10.3390/ma13235517
  • Förner A., Giese S., Arnold C., Felfer P., Körner C., Neumeier S., Göken M.:
    Nanoscaled eutectic NiAl-(Cr,Mo) composites with exceptional mechanical properties processed by electron beam melting
    In: Scientific Reports 10 (2020), Article No.: 15153
    ISSN: 2045-2322
    DOI: 10.1038/s41598-020-72093-5
  • Bieske J., Franke M., Schloffer M., Körner C.:
    Microstructure and properties of TiAl processed via an electron beam powder bed fusion capsule technology
    In: Intermetallics 126 (2020), Article No.: 106929
    ISSN: 0966-9795
    DOI: 10.1016/j.intermet.2020.106929
  • Winkler S., Mutschall H., Biggemann J., Fey T., Greil P., Körner C., Weisbach VG., Meyer-Lindenberg A., Arkudas A., Horch RE., Steiner D.:
    Human Umbilical Vein Endothelial Cell Support Bone Formation of Adipose-Derived Stem Cell-Loaded and 3D-Printed Osteogenic Matrices in the Arteriovenous Loop Model
    In: Tissue Engineering - Part A (2020)
    ISSN: 1937-335X
    DOI: 10.1089/ten.tea.2020.0087
  • Heinl M., Greiner S., Wudy K., Pobel C., Rasch M., Huber F., Papke T., Merklein M., Schmidt M., Körner C., Drummer D., Hausotte T.:
    Measuring procedures for surface evaluation of additively manufactured powder bed based polymer and metal parts
    In: Measurement Science and Technology 31 (2020), p. 1-14
    ISSN: 1361-6501
    DOI: 10.1088/1361-6501/ab89e2
  • Adler L., Fu Z., Körner C.:
    Electron beam based additive manufacturing of Fe3Al based iron aluminides – Processing window, microstructure and properties
    In: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 785 (2020), Article No.: 139369
    ISSN: 0921-5093
    DOI: 10.1016/j.msea.2020.139369
  • Luo N., Scheitler CJ., Ciftci N., Galgon F., Fu Z., Uhlenwinkel V., Schmidt M., Körner C.:
    Preparation of Fe-Co-B-Si-Nb bulk metallic glasses by laser powder bed fusion: Microstructure and properties
    In: Materials Characterization 162 (2020), Article No.: 110206
    ISSN: 1044-5803
    DOI: 10.1016/j.matchar.2020.110206
  • Guschlbauer R., Burkhardt AK., Fu Z., Körner C.:
    Effect of the oxygen content of pure copper powder on selective electron beam melting
    In: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 779 (2020), Article No.: 139106
    ISSN: 0921-5093
    DOI: 10.1016/j.msea.2020.139106
  • Heßelmann C., Wolf T., Galgon F., Körner C., Albert J., Wasserscheid P.:
    Additively manufactured Raney-type Copper catalyst for methanol synthesis
    In: Catalysis: Science and Technology 10 (2020), p. 164-168
    ISSN: 2044-4753
    DOI: 10.1039/C9CY01657K
  • Körner C., Markl M., Koepf JA.:
    Modeling and Simulation of Microstructure Evolution for Additive Manufacturing of Metals: A Critical Review
    In: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science (2020)
    ISSN: 1073-5623
    DOI: 10.1007/s11661-020-05946-3
  • Gotterbarm M., Rausch A., Körner C.:
    Fabrication of Single Crystals through a µ-Helix Grain Selection Process during Electron Beam Metal Additive Manufacturing
    In: Metals (2020)
    ISSN: 2075-4701
    DOI: 10.3390/met10030313
  • Wolf T., Fu Z., Ye J., Heßelmann C., Pistor J., Albert J., Wasserscheid P., Körner C.:
    Periodic open cellular Raney-Copper-Catalysts fabricated via selective electron beam melting
    In: Advanced Engineering Materials (2020)
    ISSN: 1438-1656
    DOI: 10.1002/adem.201901524
  • Liu C., Le Roux L., Körner C., Tabaste O., Lacan F., Bigot S.:
    Digital Twin-enabled Collaborative Data Management for Metal Additive Manufacturing Systems
    In: Journal of Manufacturing Systems (2020)
    ISSN: 0278-6125
    DOI: 10.1016/j.jmsy.2020.05.010
  • Rasch M., Heberle J., Dechet M., Bartels D., Gotterbarm M., Klein L., Gorunov A., Schmidt J., Körner C., Peukert W., Schmidt M.:
    Grain Structure Evolution of Al–Cu Alloys in Powder Bed Fusion with Laser Beam for Excellent Mechanical Properties
    In: Materials 13 (2019)
    ISSN: 1996-1944
    DOI: 10.3390/ma13010082
  • Arnold C., Böhm J., Körner C.:
    In Operando Monitoring by Analysis of Backscattered Electrons during Electron Beam Melting
    In: Advanced Engineering Materials 22 (2019), Article No.: 1901102
    ISSN: 1438-1656
    DOI: 10.1002/adem.201901102
  • Wahlmann B., Galgon F., Stark A., Gayer S., Schell N., Staron P., Körner C.:
    Growth and coarsening kinetics of gamma prime precipitates in CMSX-4 under simulated additive manufacturing conditions
    In: Acta Materialia (2019)
    ISSN: 1359-6454
    DOI: 10.1016/j.actamat.2019.08.049
  • Pobel C., Arnold C., Osmanlic F., Fu Z., Körner C.:
    Immediate development of processing windows for selective electron beam melting using layerwise monitoring via backscattered electron detection
    In: Materials Letters 249 (2019), p. 70 - 72
    ISSN: 0167-577X
    DOI: 10.1016/j.matlet.2019.03.048
  • Meid C., Dennstedt A., Ramsperger M., Pistor J., Ruttert B., Lopez-Galilea I., Theisen W., Körner C., Bartsch M.:
    Effect of heat treatment on the high temperature fatigue life of single crystalline nickel base superalloy additively manufactured by means of selective electron beam melting
    In: Scripta Materialia 168 (2019), p. 124-128
    ISSN: 1359-6462
    DOI: 10.1016/j.scriptamat.2019.05.002
  • Pobel C., Osmanlic F., Lodes M., Wachter S., Körner C.:
    Processing windows for Ti-6Al-4V fabricated by selective electron beam melting with improved beam focus and different scan line spacings
    In: Rapid Prototyping Journal 25 (2019), p. 665-671
    ISSN: 1355-2546
    DOI: 10.1108/RPJ-04-2018-0084
  • Pobel C., Reichel S., Fu Z., Osmanlic F., Körner C.:
    Advanced process strategy to realize microducts free of powder using selective electron beam melting
    In: International Journal of Advanced Manufacturing Technology (2019)
    ISSN: 0268-3768
    DOI: 10.1007/s00170-019-03615-3
  • Fiegl T., Franke M., Körner C.:
    Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg
    In: Optics and Laser Technology 111 (2019), p. 51-57
    ISSN: 0030-3992
    DOI: 10.1016/j.optlastec.2018.08.050
  • Wolf T., Fu Z., Körner C.:
    Selective electron beam melting of an aluminum bronze: Microstructure and mechanical properties
    In: Materials Letters 238 (2019), p. 241-244
    ISSN: 0167-577X
    DOI: 10.1016/j.matlet.2018.12.015
  • Markl M., Rausch A., Küng V., Körner C.:
    SAMPLE: A Software Suite to Predict Consolidation and Microstructure for Powder Bed Fusion Additive Manufacturing
    In: Advanced Engineering Materials (2019), Article No.: 1901270
    ISSN: 1438-1656
    DOI: 10.1002/adem.201901270
  • Bürger D., Parsa AB., Ramsperger M., Körner C., Eggeler G.:
    Creep properties of single crystal Ni-base superalloys (SX): A comparison between conventionally cast and additive manufactured CMSX-4 materials
    In: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 762 (2019), Article No.: 138098
    ISSN: 0921-5093
    DOI: 10.1016/j.msea.2019.138098
  • Pistor J., Körner C.:
    Formation of topologically closed packed phases within CMSX-4 single crystals produced by additive manufacturing
    In: Materials Letters 1 (2019)
    ISSN: 0167-577X
    DOI: 10.1016/j.mlblux.2019.100003
  • Köpf J., Soldner D., Ramsperger M., Mergheim J., Markl M., Körner C.:
    Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting
    In: Computational Materials Science 162 (2019), p. 148-155
    ISSN: 0927-0256
    DOI: 10.1016/j.commatsci.2019.03.004
  • Arnold C., Pobel C., Osmanlic F., Körner C.:
    Layerwise monitoring of electron beam melting via backscatter electron detection
    In: Rapid Prototyping Journal 24 (2018), p. 1401 - 1406
    ISSN: 1355-2546
    DOI: 10.1108/RPJ-02-2018-0034
  • Novak N., Borovinsek M., Vesenjak M., Wormser M., Körner C., Tanaka S., Hokamoto K., Ren Z.:
    Crushing Behavior of Graded Auxetic Structures Built from Inverted Tetrapods under Impact
    In: physica status solidi (b) (2018)
    ISSN: 0370-1972
    DOI: 10.1002/pssb.201800040
  • Osmanlic F., Wudy K., Laumer T., Schmidt M., Drummer D., Körner C.:
    Modeling of Laser Beam Absorption in a Polymer Powder Bed
    In: Polymers 10 (2018)
    ISSN: 2073-4360
    DOI: 10.3390/polym10070784
  • Pobel C., Lodes M., Körner C.:
    Selective Electron Beam Melting of Oxide Dispersion Strengthened Copper
    In: Advanced Engineering Materials 20 (2018)
    ISSN: 1438-1656
    DOI: 10.1002/adem.201800068
  • Guschlbauer R., Momeni S., Osmanlic F., Körner C.:
    Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties
    In: Materials Characterization (2018)
    ISSN: 1044-5803
    DOI: 10.1016/j.matchar.2018.04.009
  • Köpf J., Gotterbarm M., Markl M., Körner C.:
    3D multi-layer grain structure simulation of powder bed fusion additive manufacturing
    In: Acta Materialia 152 (2018), p. 119-126
    ISSN: 1359-6454
    DOI: 10.1016/j.actamat.2018.04.030
  • Markl M., Körner C.:
    Powder layer deposition algorithm for additive manufacturing simulations
    In: Powder Technology 330 (2018), p. 125-136
    ISSN: 0032-5910
    DOI: 10.1016/j.powtec.2018.02.026
  • Körner C., Ramsperger M., Meid C., Bürger D., Wollgramm P., Bartsch M., Eggeler G.:
    Microstructure and Mechanical Properties of CMSX-4 Single Crystals Prepared by Additive Manufacturing
    In: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 49 (2018), p. 3781-3792
    ISSN: 1073-5623
    DOI: 10.1007/s11661-018-4762-5
  • Momeni S., Guschlbauer R., Osmanlic F., Körner C.:
    Selective electron beam melting of a copper-chrome powder mixture
    In: Materials Letters 223 (2018), p. 250-252
    ISSN: 0167-577X
    DOI: 10.1016/j.matlet.2018.03.194
  • Jüchter V., Franke M., Merenda T., Stich A., Körner C., Singer R.:
    Additive manufacturing of Ti-45Al-4Nb-C by selective electron beam melting for automotive applications
    In: Additive Manufacturing 22 (2018), p. 118-126
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2018.05.008
  • Do G., Stiegler T., Fiegl M., Adler L., Körner C., Bösmann A., Freund HD., Schwieger W., Wasserscheid P.:
    Electrophoretic Deposition of Boehmite on Additively Manufactured, Interpenetrating Periodic Open Cellular Structures for Catalytic Applications
    In: Industrial & Engineering Chemistry Research 56 (2017), p. 13403-13411
    ISSN: 0888-5885
    DOI: 10.1021/acs.iecr.7b02453
  • Arkudas A., Lipp A., Bührer G., Arnold I., Davinova D., Brandl A., Beier J., Körner C., Lyer S., Alexiou C., Kneser U., Horch RE.:
    Pedicled Transplantation of Axially Vascularized Bone Constructs in a Critical Size Femoral Defect
    In: Tissue Engineering: Parts A, B, and C (2017)
    ISSN: 1937-3368
    DOI: 10.1089/ten.tea.2017.0110
  • Wormser M., Warmuth F., Körner C.:
    Evolution of full phononic band gaps in periodic cellular structures
    In: Applied Physics A: Solids and Surfaces (2017), Article No.: 123:661
    ISSN: 0721-7250
    DOI: 10.1007/s00339-017-1278-6
  • Rausch A., Küng V., Pobel C., Markl M., Körner C.:
    Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density
    In: Materials 10 (2017)
    ISSN: 1996-1944
    DOI: 10.3390/ma10101117
  • Wormser M., Wein F., Stingl M., Körner C.:
    Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization
    In: Materials 10 (2017)
    ISSN: 1996-1944
    DOI: 10.3390/ma10101125
  • Riedlbauer DR., Scharowsky T., Singer R., Steinmann P., Körner C., Mergheim J.:
    Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V
    In: International Journal of Advanced Manufacturing Technology (2017)
    ISSN: 0268-3768
    DOI: 10.1007/s00170-016-8819-6
    URL: http://link.springer.com/article/10.1007/s00170-016-8819-6
  • Klassen A., Forster V., Jüchter V., Körner C.:
    Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl
    In: Journal of Materials Processing Technology 247 (2017), p. 280-288
    ISSN: 0924-0136
    DOI: 10.1016/j.jmatprotec.2017.04.016
  • Warmuth F., Adler L., Osmanlic F., Lodes M., Körner C.:
    Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting
    In: Smart Materials and Structures 26 (2017), Article No.: 025013
    ISSN: 1361-665X
    DOI: 10.1088/1361-665X/26/2/025013
  • Markl M., Lodes M., Franke M., Körner C.:
    Additive manufacturing using selective electron beam melting
    In: Welding and Cutting (2017), p. 177-184
    ISSN: 1612-3433
  • Rai A., Helmer H., Körner C.:
    Simulation of grain structure evolution during powder bed based additive manufacturing
    In: Additive Manufacturing 13 (2017), p. 124-134
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2016.10.007
  • Scharowsky T., Bauereiß A., Körner C.:
    Influence of the hatching strategy on consolidation during selective electron beam melting of Ti-6Al-4V
    In: International Journal of Advanced Manufacturing Technology (2017), p. 1-10
    ISSN: 0268-3768
    DOI: 10.1007/s00170-017-0375-1
  • Warmuth F., Wormser M., Körner C.:
    Single phase 3D phononic band gap material
    In: Scientific Reports (2017), Article No.: 3843
    ISSN: 2045-2322
    DOI: 10.1038/s41598-017-04235-1
  • Markl M., Lodes M., Franke M., Körner C.:
    Additive Fertigung durch selektives Elektronenstrahlschmelzen
    In: Schweissen und Schneiden (2017), p. 30-39
    ISSN: 0036-7184
  • Klassen A., Forster V., Körner C.:
    A multi-component evaporation model for beam melting processes
    In: Modelling and Simulation in Materials Science and Engineering 25 (2017), Article No.: 025003
    ISSN: 1361-651X
    DOI: 10.1088/1361-651X/aa5289
  • Markl M., Körner C.:
    Multiscale Modeling of Powder Bed-Based Additive Manufacturing
    In: Annual Review of Materials Research 46 (2016), p. 93-123
    ISSN: 1531-7331
    DOI: 10.1146/annurev-matsci-070115-032158
  • Parsa AB., Ramsperger M., Kostka A., Somsen C., Körner C., Eggeler G.:
    Transmission electron microscopy of a CMSX-4 Ni-base superalloy produced by selective electron beam melting
    In: Metals 6 (2016), Article No.: 258
    ISSN: 2075-4701
    DOI: 10.3390/met6110258
  • Raab S., Guschlbauer R., Lodes M., Körner C.:
    Thermal and Electrical Conductivity of 99.9% Pure Copper Processed via Selective Electron Beam Melting
    In: Advanced Engineering Materials 18 (2016), p. 1661-1666
    ISSN: 1438-1656
    DOI: 10.1002/adem.201600078
  • Ramsperger M., Singer R., Körner C.:
    Microstructure of the Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting
    In: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 47 (2016), p. 1469-1480
    ISSN: 1073-5623
    DOI: 10.1007/s11661-015-3300-y
  • Körner C.:
    Additive manufacturing of metallic components by selective electron beam melting - A review
    In: International Materials Reviews 61 (2016), p. 361-377
    ISSN: 0308-4590
    DOI: 10.1080/09506608.2016.1176289
  • Ruttert B., Ramsperger M., Mujica Roncery L., Lopez-Galilea I., Körner C., Theisen W.:
    Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron beam melting
    In: Materials and Design 110 (2016), p. 720-727
    ISSN: 0261-3069
    DOI: 10.1016/j.matdes.2016.08.041
  • Helmer H., Bauereiß A., Singer R., Körner C.:
    Erratum to: ‘Grain structure evolution in Inconel 718 during selective electron beam melting’ (Materials Science & Engineering A (2016) 668 (180–187 (S0921509316305536) (10.1016/j.msea.2016.05.046))
    In: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 676 (2016)
    ISSN: 0921-5093
    DOI: 10.1016/j.msea.2016.09.016
  • Adler L., Warmuth F., Lodes M., Osmanlic F., Körner C.:
    The effect of a negative Poisson's ratio on thermal stresses in cellular metallic structures
    In: Smart Materials and Structures 25 (2016), Article No.: 115038
    ISSN: 1361-665X
    DOI: 10.1088/0964-1726/25/11/115038
  • Rai A., Markl M., Körner C.:
    A coupled Cellular Automaton–Lattice Boltzmann model for grain structure simulation during additive manufacturing
    In: Computational Materials Science 124 (2016), p. 37-48
    ISSN: 0927-0256
    DOI: 10.1016/j.commatsci.2016.07.005
  • Markl M., Ammer R., Rüde U., Körner C.:
    Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam
    In: International Journal of Advanced Manufacturing Technology 78 (2015), p. 239-247
    ISSN: 0268-3768
    DOI: 10.1007/s00170-014-6594-9
    URL: http://link.springer.com/article/10.1007/s00170-014-6594-9
  • Scharowsky T., Jüchter V., Singer R., Körner C.:
    Influence of the Scanning Strategy on the Microstructure and Mechanical Properties in Selective Electron Beam Melting of Ti-6Al-4V
    In: Advanced Engineering Materials 17 (2015), p. 1573-1578
    ISSN: 1438-1656
    DOI: 10.1002/adem.201400542
  • Ramsperger M., Mujica Roncery L., Lopez-Galilea I., Singer R., Theisen W., Körner C.:
    Solution Heat Treatment of the Single Crystal Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting
    In: Advanced Engineering Materials 17 (2015), p. 1486-1493
    ISSN: 1438-1656
    DOI: 10.1002/adem.201500037
  • Peters W., Eypasch M., Frank T., Schwerdtfeger J., Körner C., Bösmann A., Wasserscheid P.:
    Efficient hydrogen release from perhydro-N-ethylcarbazole using catalyst-coated metallic structures produced by selective electron beam melting
    In: Energy and Environmental Science 8 (2015), p. 641-649
    ISSN: 1754-5692
    DOI: 10.1039/c4ee03461a
  • Lodes M., Guschlbauer R., Körner C.:
    Process development for the manufacturing of 99.94% pure copper via selective electron beam melting
    In: Materials Letters 143 (2015), p. 298-301
    ISSN: 0167-577X
    DOI: 10.1016/j.matlet.2014.12.105
  • Körner C., Liebold Ribeiro Y.:
    A systematic approach to identify cellular auxetic materials
    In: Smart Materials and Structures 24 (2015), Article No.: 025013
    ISSN: 1361-665X
    DOI: 10.1088/0964-1726/24/2/025013
  • Bührer G., Balzer A., Arnold I., Beier J., Körner C., Bleiziffer O., Brandl A., Weis C., Horch RE., Kneser U., Arkudas A.:
    Combination of BMP2 and MSCs Significantly Increases Bone Formation in the Rat Arterio-Venous Loop Model
    In: Tissue Engineering - Part A 21(1-2) (2015), p. 96-105
    ISSN: 1937-335X
    DOI: 10.1089/ten.tea.2014.0028
    URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293096/
  • Körner C., Warmuth F.:
    Phononic band gaps in 2D quadratic and 3D cubic cellular structures
    In: Materials 8 (2015), p. 8327-8337
    ISSN: 1996-1944
    DOI: 10.3390/ma8125463
  • Klumpp M., Inayat A., Schwerdtfeger J., Körner C., Singer R., Freund H., Schwieger W.:
    Periodic open cellular structures with ideal cubic cell geometry: Effect of porosity and cell orientation on pressure drop behavior
    In: Chemical Engineering Journal 242 (2014), p. 364-378
    ISSN: 1385-8947
    DOI: 10.1016/j.cej.2013.12.060
  • Ammer R., Ljungblad U., Markl M., Körner C., Rüde U.:
    Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method
    In: Computers & Mathematics with Applications 67 (2014), p. 318-330
    ISSN: 0898-1221
    DOI: 10.1016/j.camwa.2013.10.001
    URL: http://www.sciencedirect.com/science/article/pii/S0898122113005944
  • Bauereiß A., Scharowsky T., Körner C.:
    Defect generation and propagation mechanism during additive manufacturing by selective beam melting
    In: Journal of Materials Processing Technology 214 (2014), p. 2522-2528
    ISSN: 0924-0136
    DOI: 10.1016/j.jmatprotec.2014.05.002
  • Klassen A., Scharowsky T., Körner C.:
    Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods
    In: Journal of Physics D: Applied Physics 47 (2014), Article No.: 275303
    ISSN: 0022-3727
    DOI: 10.1088/0022-3727/47/27/275303
  • Schaub A., Jüchter V., Singer R., Merklein M.:
    Characterization of hybrid components consisting of SEBM additive structures and sheet metal of alloy Ti-6Al-4V
    In: Key Engineering Materials (2014), p. 609-614
    ISSN: 1013-9826
    DOI: 10.4028/www.scientific.net/KEM.611-612.609
  • Schwerdtfeger J., Körner C.:
    Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss
    In: Intermetallics 49 (2014), p. 29-35
    ISSN: 0966-9795
    DOI: 10.1016/j.intermet.2014.01.004
  • Jüchter V., Scharowsky T., Singer R., Körner C.:
    Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting
    In: Acta Materialia 76 (2014), p. 252-258
    ISSN: 1359-6454
    DOI: 10.1016/j.actamat.2014.05.037
  • Klassen A., Bauereiß A., Körner C.:
    Modelling of electron beam absorption in complex geometries
    In: Journal of Physics D-Applied Physics 47 (2014), Article No.: 065307
    ISSN: 0022-3727
    DOI: 10.1088/0022-3727/47/6/065307
  • Scharowsky T., Osmanlic F., Körner C., Singer R.:
    Melt pool dynamics during selective electron beam melting
    In: Applied Physics A-Materials Science & Processing 114 (2014), p. 1303-1307
    ISSN: 0947-8396
    DOI: 10.1007/s00339-013-7944-4
  • Liebold Ribeiro Y., Körner C.:
    Phononic band gaps in periodic cellular materials
    In: Advanced Engineering Materials 16 (2014), p. 328-334
    ISSN: 1438-1656
    DOI: 10.1002/adem.201300064
  • Helmer H., Körner C., Singer R.:
    Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure
    In: Journal of Materials Research 29 (2014), p. 1987-1996
    ISSN: 0884-2914
    DOI: 10.1557/jmr.2014.192
  • Ammer R., Markl M., Jüchter V., Körner C., Rüde U.:
    Validation Experiments for LBM Simulations of Electron Beam Melting
    In: International Journal of Modern Physics C (2014), p. 1-9
    ISSN: 0129-1831
    DOI: 10.1142/S0129183114410095
    URL: http://arxiv.org/pdf/1402.2440.pdf
  • Hrabe NW., Heinl P., Bordia RK., Körner C., Fernandes RJ.:
    Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting
    In: Connective Tissue Research 54 (2013), p. 351-360
    ISSN: 0300-8207
    DOI: 10.3109/03008207.2013.822864
  • Körner C., Bauereiß A., Attar E.:
    Fundamental consolidation mechanisms during selective beam melting of powders
    In: Modelling and Simulation in Materials Science and Engineering 21 (2013), Article No.: 085011
    ISSN: 0965-0393
    DOI: 10.1088/0965-0393/21/8/085011
  • Wieding J., Fritsche A., Heinl P., Körner C., Matthias C., Seitz H., Mittelmeier W., Bader R.:
    Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions
    In: Journal of Applied Biomaterials and Fundamental Materials 11 (2013), p. 159-166
    ISSN: 2280-8000
    DOI: 10.5301/JABFM.2013.10832
  • Markl M., Ammer R., Ljungblad U., Rüde U., Körner C.:
    Electron beam absorption algorithms for electron beam melting processes simulated by a three-dimensional thermal free surface lattice Boltzmann method in a distributed and parallel environment
    In: Procedia Computer Science 18 (2013), p. 2127-2136
    ISSN: 1877-0509
    DOI: 10.1016/j.procs.2013.05.383
    URL: http://www.sciencedirect.com/science/article/pii/S1877050913005267
  • Schwerdtfeger J., Schury F., Stingl M., Wein F., Singer R., Körner C.:
    Mechanical characterisation of a periodic auxetic structure produced by SEBM
    In: physica status solidi (b) 249 (2012), p. 1347-1352
    ISSN: 0370-1972
    DOI: 10.1002/pssb.201084211
  • Knorr T., Heinl P., Schwerdtfeger J., Körner C., Singer R., Etzold B.:
    Process specific catalyst supports-Selective electron beam melted cellular metal structures coated with microporous carbon
    In: Chemical Engineering Journal (2012), p. 725-733
    ISSN: 1385-8947
    DOI: 10.1016/j.cej.2011.10.009
  • Schwerdtfeger J., Singer R., Körner C.:
    In situ flaw detection by IR-imaging during electron beam melting
    In: Rapid Prototyping Journal 18 (2012), p. 259-263
    ISSN: 1355-2546
    DOI: 10.1108/13552541211231572
  • Arkudas A., Galyna P., Beier J., Weigel L., Körner C., Singer R., Bleiziffer O., Polykandriotis E., Horch RE., Kneser U.:
    Combination of extrinsic and intrinsic pathways significantly accelerates axial vascularization of bioartificial tissues
    In: Plastic and Reconstructive Surgery 129 (2012), p. 55e-65e
    ISSN: 0032-1052
    DOI: 10.1097/PRS.0b013e3182361f97
  • Inayat A., Schwerdtfeger J., Freund H., Körner C., Singer R., Schwieger W., Freund H.:
    Periodic open-cell foams: Pressure drop measurements and modeling of an ideal tetrakaidecahedra packing
    In: Chemical Engineering Science 66 (2011), p. 2758-2763
    ISSN: 0009-2509
    DOI: 10.1016/j.ces.2011.03.031
  • Schwerdtfeger J., Wein F., Leugering G., Singer R., Körner C., Stingl M., Schury F.:
    Design of Auxetic Structures via Mathematical Optimization
    In: Advanced Materials 23 (2011), p. 2650--2654
    ISSN: 0935-9648
    DOI: 10.1002/adma.201004090
  • Hrabe NW., Heinl P., Flinn B., Körner C., Bordia RK.:
    Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V)
    In: Journal of Biomedical Materials Research Part B-Applied Biomaterials (2011), p. 313-320
    ISSN: 1552-4973
    DOI: 10.1002/jbm.b.31901
  • Körner C., Attar E., Heinl P.:
    Mesoscopic simulation of selective beam melting processes
    In: Journal of Materials Processing Technology 211 (2011), p. 978-987
    ISSN: 0924-0136
    DOI: 10.1016/j.jmatprotec.2010.12.016
  • Mitschke H., Schwerdtfeger J., Schury F., Stingl M., Körner C., Singer R., Robins V., Mecke K., Schröder-Turk G.:
    Erratum: Finding auxetic frameworks in periodic tessellations
    In: Advanced Materials 23 (2011), p. 2669-2674
    ISSN: 0935-9648
    DOI: 10.1002/adma.201190118
  • Schwerdtfeger J., Heinl P., Singer R., Körner C.:
    Auxetic cellular structures through selective electron-beam melting
    In: physica status solidi (b) 247 (2010), p. 269-272
    ISSN: 0370-1972
    DOI: 10.1002/pssb.200945513
  • Ponader S., von Wilmowsky C., Widenmayer M., Lutz R., Heinl P., Körner C., Singer R., Nkenke E., Neukam FW., Schlegel K.:
    In vivo performance of selective electron beam-melted Ti-6Al-4V structures
    In: Journal of Biomedical Materials Research Part A 92 (2010), p. 56-62
    ISSN: 1549-3296
    DOI: 10.1002/jbm.a.32337
  • Heinl P., Müller L., Körner C., Singer R., Müller F.:
    Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting
    In: Acta Biomaterialia 4 (2008), p. 1536-1544
    ISSN: 1742-7061
    DOI: 10.1016/j.actbio.2008.03.013
  • Ponader S., Vairaktaris E., Heinl P., von Wilmowsky C., Rottmair A., Körner C., Singer R., Holst S., Schlegel K., Neukam FW., Nkenke E.:
    Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts
    In: Journal of Biomedical Materials Research Part A 84 (2008), p. 1111-1119
    ISSN: 1549-3296
    DOI: 10.1002/jbm.a.31540
  • Heinl P., Körner C., Singer R.:
    Selective electron beam melting of cellular titanium: Mechanical properties
    In: Advanced Engineering Materials 10 (2008), p. 882-888
    ISSN: 1438-1656
    DOI: 10.1002/adem.200800137
  • Heinl P., Rottmair A., Körner C., Singer R.:
    Cellular titanium by selective electron beam melting
    In: Advanced Engineering Materials 9 (2007), p. 360-364
    ISSN: 1438-1656
    DOI: 10.1002/adem.200700025

Book Contributions

  • Wormser M., Adler L., Körner C.:
    Mechanische zellulare Metamaterialien aus Metall durch Selektives Elektronenstrahlschmelzen
    In: DGM (ed.): Materialwissenschaft und Werkstofftechnik:
    Zellulare Werkstoffe · Zellulare Materialien
    , 2018, p. 16-24 (Dialog, Vol.2/2018)

Conference Contributions

  • Roux LL., Liu C., Ji Z., Kerfriden P., Gage D., Feyer F., Körner C., Bigot S.:
    Automatised quality assessment in additive layer manufacturing using layer-by-layer surface measurements and deep learning
    14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 2020 (Naples, ITA, 15. July 2020 - 17. July 2020)
    In: Roberto Teti, Doriana M. D'Addona (ed.): Procedia CIRP 2021
    DOI: 10.1016/j.procir.2021.03.050
  • Lomakin K., Guschlbauer R., Osmanlic F., Fu Z., Sippel M., Helmreich K., Körner C., Vossiek M., Gold G.:
    3D Printed Copper Waveguides by Selective Electron Beam Melting Process for E-Band
    EuMW 2019 (Paris)
    DOI: 10.23919/EuMC.2019.8910893
  • Heßelmann C., Wolf T., Körner C., Albert J., Wasserscheid P.:
    Additive manufacturing meets reaction engineering - Novel Raney® copper catalyst structures for methanol synthesis
    2019 DGMK International Conference on Circular Economy - A Fresh View on Petrochemistry (Dresden, DEU, 9. October 2019 - 11. October 2019)
    In: H. Blanke, H. Hager, A. Jess, J. A. Lercher, M. Marchionna, D. Vogt, M. Bender (ed.): DGMK Tagungsbericht 2019
  • Köpf J., Rasch M., Meyer A., Markl M., Schmidt M., Körner C.:
    3D grain growth simulation and experimental verification in laser beam melting of IN718
    10th CIRP Conference on Photonic Technologies (LANE 2018) (Fürth, 4. September 2018 - 6. September 2018)
    In: Procedia CIRP 74 (2018) 2018
    Open Access: https://www.sciencedirect.com/science/article/pii/S2212827118308187/pdf?md5=ea85f15a94f75d82fce787e5b0a20225πd=1-s2.0-S2212827118308187-main.pdf
    URL: https://www.sciencedirect.com/science/article/pii/S2212827118308187/pdf?md5=ea85f15a94f75d82fce787e5b0a20225πd=1-s2.0-S2212827118308187-main.pdf
  • Hübner D., Gotterbarm M., Kergaßner A., Köpf J., Pobel C., Markl M., Mergheim J., Steinmann P., Körner C., Stingl M.:
    Topology Optimization in Additive Manufacturing Considering the Grain Structure of Inconel 718 using Numerical Homogenization
    iCAT 2018 (Maribor, 10. October 2018 - 11. October 2018)
    In: Proceedings of 7th International Conference on Additive Technologies 2018
  • Markl M., Rausch A., Forster V., Pobel C., Körner C.:
    Predictive numerical simulations of processing windows for powder bed based additive manufacturing
    2017 Simulation for Additive Manufacturing, Sinam 2017 (Munich, 11. October 2017 - 13. October 2017)
    In: Simulation for Additive Manufacturing 2017, Sinam 2017 2017
  • Köpf J., Markl M., Körner C.:
    3D multilayer grain structure simulation for beam-based additive manufacturing
    2017 Simulation for Additive Manufacturing, Sinam 2017 (Munich, DEU, 11. October 2017 - 13. October 2017)
    In: Simulation for Additive Manufacturing 2017, Sinam 2017 2017
  • Köpf J., Rai A., Markl M., Körner C.:
    3D Grain Structure Simulation for Beam-Based Additive Manufacturing
    6th International Conference on Additive Technologies iCAT (Nürnberg, 29. November 2017 - 30. November 2016)
    In: Proceedings of the 6th International Conference on Additive Technologies iCAT 2016 2016
  • Jüchter V., Körner C.:
    Creep properties of Ti-48Al-2Cr-2Nb produced by selective electron beam melting
    3rd Conference on Powder Processing Consolidation and Metallurgy of Titanium, 2015 (Lüneburg, 31. August 2015 - 3. September 2015)
    DOI: 10.4028/www.scientific.net/KEM.704.190
  • Körner C., Ramsperger M.:
    Selective electron beam melting of the single crystalline nickel-base superalloy CMSX-4®: From columnar grains to a single crystal
    13th International Symposium on Superalloys, SUPERALLOYS 2016 (Seven Springs, 11. September 2016 - 15. September 2016)
    In: M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, S. Tin (ed.): Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys 2016
    DOI: 10.1002/9781119075646.ch37
  • Markl M., Bauereiß A., Rai A., Körner C.:
    Numerical Investigations of Selective Electron Beam Melting on the Powder Scale
    Fraunhofer Direct Digital Manufacturing Conference 2016 (Berlin, 16. March 2016 - 17. March 2016)
    In: Proceedings of the Fraunhofer Direct Digital Manufacturing Conference 2016 2016
  • Pobel C., Gotterbarm M., Samfaß V., Osmanlic F., Körner C.:
    Innovative processing strategies for selective electron beam melting: Influence of scan line spacings on composition of Ti-6Al-4V and microstructure of IN718
    6th International Conference on Additive Technologies iCAT 2016 (Nürnberg, 29. November 2016 - 30. November 2016)
    In: Igor Drstvenšek, Dietmar Drummer, Michael Schmidt (ed.): Proceedings of 6th International Conference on Additive Technologies, Ljubljana: 2016
  • Körner C., Helmer H., Bauereiß A., Singer R.:
    Tailoring the grain structure of IN718 during selective electron beam melting
    2nd European Symposium on Superalloys and Their Applications, EUROSUPERALLOYS 2014 (Giens)
    DOI: 10.1051/matecconf/20141408001
  • Schaub A., Merklein M., Jüchter V., Singer R., Körner C.:
    Funktionsintegration durch die Kombination additiver Fertigungsprozesse mit der Blechumformung
    2. Industriekolloquium des Sonderforschungsbereichs 814 - Additive Fertigung
    In: Drummer, D. (ed.): 2. Industriekolloquium des Sonderforschungsbereichs 814 - Additive Fertigung 2013
  • Scharowsky T., Bauereiß A., Singer R., Körner C.:
    Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting
    23rd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2012 (Austin, TX)
    URL: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84889688177&origin=inward
  • Schwerdtfeger J., Heinl P., Singer R., Körner C.:
    Selective Electron Beam Melting: A new way to auxetic cellular structures
    20th Annual International Solid Freeform Fabrication Symposium, SFF 2009 (Austin, TX)
    URL: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84892631091&origin=inward
  • Körner C., Schwerdtfeger J., Singer R.:
    Auxetic Cellular Metals
    MetFoam 2009 - 6th International Conference on Porous Metals and Metallic foams (Bratislava, 2. September 2009 - 4. September 2009)
    In: MetFoam 2009 - Proceedings of the 6th International Conference on Porous Metals and Metallic Foams 2009
  • Heinl P., Körner C., Singer R.:
    Selective electron beam melting - A novel generative manufacturing technique for cellular titanium
    5th International Conference on Porous Metals and Metallic Foams, MetFoam 2007 (Montreal, QC)
    URL: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=56549129261&origin=inward
  • Heinl P., Körner C., Singer R.:
    Mechanically Adapted Cellular Titanium for Bone Substitution
    International Symposium on Cellular Metals for Structural and Functional Applications 2008 (Dresden)

Thesis

  • Guschlbauer R.:
    Grundlagen des selektiven Elektronenstrahlschmelzens von Reinkupfer (Dissertation, 2022)
  • Luo N.:
    Laser-based additive manufacturing of bulk metallic glass-forming alloys: Processing, microstructure and properties (Dissertation, 2022)
  • Arnold C.:
    Grundlagenuntersuchung zur elektronen-optischen Prozessbeobachtung beim Pulverbettschmelzen mit dem Elektronenstrahl (Dissertation, 2022)
  • Pistor J.:
    Grundlegende Mechanismen bei der additiven Fertigung von technischen Einkristallen (Dissertation, 2022)
  • Gotterbarm M.:
    Kornstrukturmodifikation beim Selektiven Elektronenstrahlschmelzen der Nickelbasis-Superlegierung IN718 (Dissertation, 2022)
  • Adler L.:
    Grundlagen des Elektronenstrahlschmelzens von Fe3Al basierten Eisenaluminiden (Dissertation, 2021)
  • Warmuth F.:
    Zellulare mechanische Metamaterialien: Design, Herstellung und Charakterisierung (Dissertation, 2021)
  • Osmanlic F.:
    Modeling of Selective Laser Sintering of Viscoelastic Polymers (Dissertation, 2019)
  • Ramsperger M.:
    Selektives Elektronenstrahlschmelzen der einkristallinen Ni-Basis Superlegierung CMSX-4 (Dissertation, 2018)
  • Jüchter V.:
    Grundlagen des Selektiven Elektronenstrahlschmelzens von Titanaluminiden (Dissertation, 2018)
  • Klassen A.:
    Simulation von Verdampfungsphänomenen beim selektiven Elektronenstrahlshmelzen (Dissertation, 2017)
  • Helmer H.:
    Additive Fertigung durch Selektives Elektronenstrahlschmelzen der Nickelbasis Superlegierung IN718: Prozessfenster, Mikrostruktur und mechanische Eigenschaften (Dissertation, 2016)
  • Scharowsky T.:
    Grundlagenuntersuchungen zum selektiven Elektronenstrahlschmelzen von TiAl6V4 (Dissertation, 2016)

Projects

Track-AM: Real-time study of electron beam melting of metals

→ More information

SFB/TRR 103 (B02): Additive manufacturing of single crystalline superalloys

Project B2 explores selective electron beam melting, which belongs to the additive manufacturing technologies, for the processing of single-crystalline superalloys. Especially the potential of the inherent high cooling rates is investigated. These lead to an ultra-fine and directional solidified microstructure. The main challenge of this project is to develop innovative processing strategies based on a sound theoretical process understanding in order to produce crack-free and preferably single crystalline samples, also with higher geometric complexity.
 

→ More information

Intelligent catalyst carrier concept with additively manufactured structures made of shape memory alloys for the optimization of the wall heat transfer in tubular reactors

Cellular structures represent a promising alternative to classical randomly packed bed reactors owing to their very good heat transport characteristics. A key challenge of using cellular structures as catalyst carriers in tubular reactors is the contact of the structure with the tube wall, which in many cases is not sufficient and thus downgrades the overall heat transfer performance. Especially with strongly exo- or endothermic reactions, this inhibition of heat transfer leads to undesirable temperature…

→ More information

SAPHIR: Simulation methods for additive processing of high temperature alloys - microstructure, in-service properties and repair

→ More information

SFB 814 (T2): Numerical modeling of local material properties and thereof derived process strategies for powder bed based additive manufacturing of bulk metallic glasses (T2)

The aim of this project is to facilitate additive manufacturing of bulk
metallic components by selective laser melting based on predictive
numerical simulations. There should be developed suitable process
strategies to ensure the amorphous material state preferably without
aging effects in the bulk as well as for complex geometries. Therefore,
clear statements using the numerical simulation has to be made exceeding
the temperature field and the material consolidation during
manufacturing towards the solidification behavior, aging and finally
crystallization.

→ More information

SFB 814 (B2): Process strategies for selective electron beam melting (B2)

This sub-project aims to automate the development of
process strategies for selective electron beam melting. The integration of the
innovative electron optics in the process cycle allows an in situ quality
control and in combination with the findings from the first funding periods,
the active control of the process. Finally, a self-learning system should be
able to manufacture arbitrary parts of even novel alloys by a process database
optimization.

→ More information

Tubulyze: Design principles of a tubular electrolysis cell made by additive and extrusion methods:
Additive manufacturing of anode substrates, surface treatment and catalyst coating

→ More information

MANUELA: Additive Manufacturing using Metal Pilot Line

→ More information

Modeling and simulation of multi-material processing of metallic materials in beam-based additive manufacturing in the powder bed

→ More information

SFB 814 (B04): Mesoscopic simulation of the selective beam melting process

The basic mechanisms that are essential in the powder based selective beam melting process are poorly understood. Most of the existing analytical and numerical models describing the process of consolidation in a homogenized image, i.e. individual powder particles are not resolved. This approach is suitable for information on averages, but cannot capture the local influence of the powder, i.e. the powder size distribution, the stochastic effect of the powder bed, the wetting of the powder by the melt and the formation of the melt. The actual selective melting process and thereby acting mechanisms can only be understood on the scale of the powder particles, with the help of numerical simulation on the mesoscopic scale. The aim of this project is to provide a numerical tool for mesoscopic simulation of selective beam melting and to use it to develop innovative process strategies. The mesoscopic scale allows the prediction of defects, surface quality and accuracy of the structure for different materials as a function of material parameters (powder form, bulk density, ...) and the process parameters (beam shape, energy per unit length, speed, ...).
In the first phase, a tool for the 2D simulation of selective electron beam melting was developed and validated with experimental results. The main task was the modeling of the entire build process with its different time scales (pre-heating, melting, applying new powder layer). Among other things, the complex coupling of the beam in the powder bed, radiation losses at the surface, mass and energy loss through evaporation and the deformation of the molten bath by the evaporation pressure is taken into account. The software is now able to simulate assembly processes, taking into account different scanning strategies on many layers. Such process strategies as the remelt strategy and the refill strategy are investigated. The verification of the numerical results is done in close cooperation with subproject B2.
In the second phase, the previous model is transferred to polymers. For this purpose, the absorption of the laser beam in the partially transparent stochastic powder bed and the highly viscous, viscoelastic material behavior must be described. Development and verification of the model is carried out in cooperation with subproject B3. In a further step, a method of 3D simulation of the grain structure in the selective beam melting of metals is implemented, in order to predict the texture of the materials as a function of process strategy.

→ More information

SFB 814 (B5): Additive and formative manufacturing of hybrid parts with locally adapted, tailored properties (B5)

Fundamental understanding of a new and innovative process combining sheet metal forming with additive manufacturing is the main goal of this research work.

→ More information

Advanced in-process monitoring and self-optimisation of Electron Beam additive manufacturing process

→ More information

Development of a near-infrared (NIR) heater to reduce the build time of the Electron Beam Melting (EBM)

→ More information

Elektronenoptische Bildgebung per in-situ Bauteilvermessung bei der pulverbettbasierten additiven Fertigung mit dem Elektronenstrahl

→ More information

SEBM processing of NiAlCrMo near eutectic alloy

→ More information

SEBM process development for UN3S for the fabrication of inlet guide vane (IGV) blades

→ More information

Selective electron beam melting of catalytically active copper-based materials

Raney-copper is a catalyst made from a copper base alloy containing at least one less noble element than copper (e.g. zinc). After fabricating the base material via a casting process consisting of a melt and a quenching step the alloy can be converted into a nanoporous and catalytically active structure using an alkaline solution.

During this project a Raney-copper type alloy will be processed using the selective electron beam melting process (SEBM). The main goal of this project is to utilize the process’ specific characteristics like a high cooling rate and geometric freedom to build periodic cellular catalyst structures. Those cellular structures surface will then be made catalytically active for their application in the methanol synthesis process using a leaching step. In contrast to other yet fabricated cellular metal catalyst structures the Raney-copper ones do not need any further coating with active species like e.g. palladium.

→ More information

Expansion of the capability of selective electron beam melting by improved electron beam technology

Ziel dieses Projektes ist es, die Einschränkungen der bisherigen Elektronenstrahlkanone und eingeschränkten Prozesskontrolle zu überwinden, um damit einen großen Entwicklungsschritt in dieser Technologie zu vollziehen. Dazu ist geplant, die Elektronenstrahlkanone einer bei WTM vorhandenen Arcam S12 (diese wird geopfert) durch eine erheblich leistungsfähigere Elektronenstrahlkanone zu ersetzen. Auf dem Markt sind Kanonen mit sehr viel höherer Leistung bei gleichbleibend guter Strahlqualität vorhan…

→ More information

Research programme of alloy STAL15SX

→ More information

EXC15 EAM (E2): Cellular Metals, Auxetic Metals by Selective Electron Beam Melting

Metamaterials are artificial structures with extraordinary properties as result of their internal architecture. We are investigating mechanical metamaterials manufactured by SEBM. We investigate auxetic materials characterized by a negative Poisson’s ratio as well as phononic band gap materials. Structure design rests upon basic knowledge about mechanisms generated by numerical simulation.

→ More information

Evaporation pheanomena during selective electron beam melting and theri influence on material properties

Additive manufacturing of components is a key technology of the future. The powder bed based selective electron beam melting process allows to produce complex components from high performance alloys. Nevertheless, the highly dynamic melting process is not fully understood and suffers from binding faults, changes of the alloy composition and process instabilities. Aim of the project is to understand the basic mechanisms during selective electron beam melting and to use this knowledge to predict and to influence the resulting materials quality. In order to reach this aim, the selevtive electron beam melting process takting selective vaporation phenomena into account is simulated based on a Lattice Boltzmann Model. Evaporation leads to material loss, has influence on the melt pool dynamics and changes the alloy composition. Simulation on the scale of the powder particles reveals phenomena which result from the complex interplay between beam, powder and melt pool. The numerical results are varified by experiments by an exemplary alloy.

→ More information

EXC15 EAM: jLAMS

Target oriented material development has to be based on a profound understanding of process-inherent mechanisms. This project aims on in-situ observation of the material consolidation process during additive manufacturing.

This includes particular phase transformations and the nucleation and growth of precipitates. The observation of these phenomena is a big challenge due to their high temporal dynamics. New experimental environments allow the observation of the formation of the microstructure of a material under AM conditions. Access to this accelerator based experimental environment allows the competence anchor DESY-FAU DHW, a cooperation between FAU and the Helmholtz centers DESY and DHW.

 

→ More information

AMAZE: Additive Manufacturing Aiming Towards Zero Waste & Efficient Production of High-Tech Metal Products

The overarching goal of AMAZE is to rapidly produce large defect-free additively-manufactured (AM) metallic components up to 2 metres in size, ideally with close to zero waste, for use in the following high-tech sectors namely: aeronautics, space, automotive, nuclear fusion and tooling.

Four pilot-scale industrial AM factories will be established and enhanced, thereby giving EU manufacturers and end-users a world-dominant position with respect to AM production of high-value metallic parts, by 2016. A further aim is to achieve 50% cost reduction for finished parts, compared to traditional processing.

The project will design, demonstrate and deliver a modular streamlined work-flow at factory level, offering maximum processing flexibility during AM, a major reduction in non-added-value delays, as well as a 50% reduction in shop-floor space compared with conventional factories.

AMAZE will dramatically increase the commercial use of adaptronics, in-situ sensing, process feedback, novel post-processing and clean-rooms in AM, so that (i) overall quality levels are improved, (ii) dimensional accuracy is increased by 25% (iii) build rates are increased by a factor of 10, and (iv) industrial scrap rates are slashed to <5%. Scientifically, the critical links between alloy composition, powder/wire production, additive processing, microstructural evolution, defect formation and the final properties of metallic AM parts will be examined and understood. This knowledge will be used to validate multi-level process models that can predict AM processes, part quality and performance. In order to turn additive manufacturing into a mainstream industrial process, a sharp focus will also be drawn on pre-normative work, standardisation and certification, in collaboration with ISO, ASTM and ECSS. The team comprises 31 partners: 21 from industry, 8 from academia and 2 from intergovernmental agencies. This represent the largest and most ambitious team ever assembled on this topic.

→ More information

FastEBM: High Productivity Electron Beam Melting Additive Manufacturing Development for the Part Production Systems Market

Electron beam melting additive manufacturing is used to produce successive layers of a part in a powder bed and offers the ability to produce components closest to their final dimensions, with good surface finish. At this time the process is faster than any other technique of comparable quality, however the parts are not produced at sufficient rate to make them economically viable for any but very high value specific applications. One key output of the project will be the knowledge surrounding the use of the high powder electron beam gun, including the process control, and modeled and validated understanding of beam-powder bed interaction. The target objectives is the transfer of the 2D model to a 3D model and its parallel implementation. The outcome of the simulation will be compared with real experimental data and therefore the model parameters are adjusted in such a way that the resulting numerical melt pool sizes correspond to the experimental ones.

→ More information

SIMCHAIN: Development of physically based simulation chain for microstructure evolution and resulting mechanical properties focused on additive manufacturing processes

→ More information

Enhacement of the SEBM-process of pure copper in order to fabricate fine knob structures with high surface quality true to size

→ More information

Processing and adjustment of the microstructure of y-TiAl by selective electron beam melting

Titanaluminde haben durch das Ersetzen deutlich schwererer Nickelbasislegierungen großes Potential für Kraftstoffeinsparungen in zukünftige Generationen von Flugzeug- und Kraftwerksturbinen. Die Verarbeitung dieser Materialien gestaltet sich allerdings äußerst schwierig, da die Materialeigenschaften stark von der Mikrostruktur und chemischen Homogenität des Endproduktes abhängen. Im vorliegenden Vorhaben soll ein Rapid Manufacturing Prozess, das selektive Elektronenstrahlschmelzen, zur Verarb…

→ More information

Activity Development of process strategies

The electron beam offers the potential for innovative selective beam melting process strategies due its inertia-free deflection at extremely high speed.

A deep understanding of the process is developed with the help of different methods of in-situ process monitoring (thermal imaging and high speed camera). In particular, the potential to tailor the microstructure, grain structure and texture of the material with the help of the extremely high beam velocity is explored. In addition, we investigate the mechanisms of evaporation induced material displacement and the possibility to use this effect to realize hollow structures within components.

CRC DFG 814 “Additive Manufacturing”  (http://www.sfb814.forschung.uni-erlangen.de/).

 

A further focus is on processing of single crystalline nickel-base alloys. We are designing building strategies to avoid cold and hot crack formation. The main challenge is to control directional and rapid solidification in order to realize single crystals directly developing from powder particles without any seed material. We are now able to realize large single crystals out of nickel-base alloys with unique homogeneity by selective electron beam melting. 

CRC DFG TR 103 “From Atom to Turbine Blade” (http://www.sfb-transregio103.de/).

→ More information

Activity Development of SEBM alloys

We investigate the potential of SEBM for processing of technical alloys based on Iron Aluminides, Nickel and Copper as well as amorphous metals.

For Iron aluminides, the focus is on the influence of additional elements such as Boron and Titanium on the workability, the microstructure and the resulting properties.  

Concerning pure Copper and Copper alloys our focus is on the influence of minor elements or contaminations such as Oxygen or Phosphorus on the resulting properties, in particular the achievable heat conductivity

→ More information

Activity Expansion of the capability of SEBM by improved electron beam technology

Commercial available EBSM machines show strong limitations with respect to the beam power, beam quality and beam control. To overcome these limitations, the electron gun and control system of an Arcam S12 System was renewed. The resulting machine is equipped with a 6 kW electron beam gun and a backscattering electron detector for process monitoring. This is the first electron beam AM machine where the electron beam serves for both, processing and analyzing.

→ More information

Activity Structural reactors of catalytically active materials

We investigate new alloys for structural catalysts that serve as carrier material and simultaneously as catalytically active material in structured reactors. The active catalyst (Raney copper type) develops from the AM manufactured structure by leaching. Thus, geometric restrictions of complex coating processes for catalytic functionalization disappear. The direct generation of the catalytically active material on the carrier structure is expected to show advantages with respect to thermal management. In order to demonstrate the potential of structural catalysts we consider the methanol synthesis.

→ More information

Activity Combinatorial alloy development

We use combinatorial methods for the development of new alloys that allow the creation of large material libraries based on thermodynamic predictions. To do this, the Chair of WTM is currently establishing a laser metal deposition machine from the company InssTek. This machine is equipped with four powder hoppers in a glove box with inert gas atmosphere. Besides materials libraries we are also able to realize multi-material and graded components.

→ More information

Activity X-ray and neutron methods for the material analysis of AM alloys

Target oriented material development has to be based on a profound understanding of process-inherent mechanisms. This project aims on in-situ observation of the material consolidation process during additive manufacturing.

This includes particular phase transformations and the nucleation and growth of precipitates. The observation of these phenomena is a big challenge due to their high temporal dynamics. New experimental environments allow the observation of the formation of the microstructure of a material under AM conditions. Access to this accelerator based experimental environment allows the competence anchor DESY-FAU DHW, a cooperation between FAU and the Helmholtz centers DESY and DHW.

→ More information

Activity SEBM of special alloys

We examine the possibility to process high performance alloys such as non-weldable Nickel-base alloys or special Copper alloys by means of SEBM. There are also experiences in the processing of Titanium alloys, in particular for medical applications, Titanium aluminides and steels.

→ More information

Development of bridge plugs in the framework of sealing of deep investigation boreholes in the context of a Geologica Disposal Facility

→ More information

SFB 814 (C5): Mesoscopic modelling and simulation of properties of additively manufactured metallic parts (C5)

Based on the gained knowledge of projects B4 and C5,
the aim of this project is to account for the influence of part borders on the
resulting material/part-mesostructure for powder- and beam-based additive
manufacturing technologies of metals and to model the resulting meso- and
macroscopic mechanical properties. The mechanical behavior of these
mesostructures and the influence of the inevitable process-based geometrical
uncertainties is modelled, verified, quantified and validated especially for
cellular grid-based structures.

→ More information




  • Imprint
  • Privacy
  • Accessibility
Up