• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Lehrstuhllogo
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften
Suche öffnen
  • Deutsch
  • My Campus
  • FAUdir
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften

Lehrstuhllogo

Navigation Navigation close
  • Chair
    • Team
    • Career
    • Contact
    Portal Chair
  • Research
    • Additive Manufacturing
    • Modelling and Simulation
    • Casting Technology
    • Ultra-hard Coatings
    • High Performance Alloys
    • Equipment
    • Publications
    • Dissertations
    Portal Research
  • Teaching
    • Lectures
    • Theses
    • Scripts and Instructions
    Portal Teaching
  1. Home
  2. Research
  3. Ultra-hard Coatings
  4. CVD diamond foils
  5. CVD diamond foils for thermoelectric applications

CVD diamond foils for thermoelectric applications

In page navigation: Research
  • Additive Manufacturing
  • Modelling and Simulation
  • Casting Technology
  • Ultra-hard Coatings
    • Process technology
    • CVD diamond coatings of metals and ceramics
    • CVD diamond foils
      • CVD diamond foils for mechanical applications
      • CVD diamond foils for thermoelectric applications
    • Test and characterisation of coated surfaces and components
  • High Performance Alloys
  • Equipment
  • Publications
  • Dissertations

CVD diamond foils for thermoelectric applications


Doping and varying the grain sizes via manipulation of CVD process parameters allow the production of diamond foils with application specific properties. On the one hand, micro crystalline diamond foils with a very high heat conductivity (around 2000 W/mK)  and a very low electrical conductivity can be produced, while on the other hand boron doped (p-conduction) diamond foils  with corresponding micro and nano grain sizes can have electrical conductivities of up to 40.000 S/m and a thermal conductivity of significantly less than 100 W/mK.

It was already possible to measure Seebeck coefficients above 350 µV/K. These completely different diamond foils are being further developed to improve thermoelectrical properties.

The doping of Titanium and Vanadium for the n-conduction of diamond is another topic of research.


Contact:

    • apl. Prof. Dr.-Ing. habil. Stefan Rosiwal

Publications:


  • Borchardt R., Fromm T., Haase A., Fecher J., Rosiwal S.:
    World's First Thermoelectric Generator Made of Tailored Carbon Allotropes
    In: Advanced Engineering Materials (2020)
    ISSN: 1438-1656
    DOI: 10.1002/adem.202000108
  • Haase A., Peters A., Rosiwal S.:
    Growth and thermoelectric properties of nitrogen-doped diamond/graphite
    In: Diamond and Related Materials 63 (2016), p. 222-226
    ISSN: 0925-9635
    DOI: 10.1016/j.diamond.2015.10.023
  • Fecher J., Wormser M., Rosiwal S.:
    Long term oxidation behavior of micro- and nano-crystalline CVD diamond foils
    In: Diamond and Related Materials 61 (2016), p. 41-45
    ISSN: 0925-9635
    DOI: 10.1016/j.diamond.2015.11.009
  • Engenhorst M., Fecher J., Notthoff C., Schierning G., Schmechel R., Rosiwal S.:
    Thermoelectric transport properties of boron-doped nanocrystalline diamond foils
    In: Carbon 81 (2015), p. 650-662
    ISSN: 0008-6223
    DOI: 10.1016/j.carbon.2014.10.002
  • Sobolewski S., Lodes M., Rosiwal S., Singer R.:
    Surface energy of growth and seeding side of free standing nanocrystalline diamond foils
    In: Surface & Coatings Technology 232 (2013), p. 640-644
    ISSN: 0257-8972
    DOI: 10.1016/j.surfcoat.2013.06.051

Chair of Materials Science and Engineering Metals
Martensstr. 5
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up